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Abstract
A sufficiently general form of a two-component dark-bright (DB) vector optical
soliton with seven free real parameters is obtained by solving the integrable
coupled nonlinear Schrödinger equation (Manakov model) with the help of
the Hirota method. We find that this solution unlike the other vector soliton
solutions of the Manakov model (namely bright–bright, dark–dark and bright-
guided dark vector optical solitons) possesses a singularity. This singularity is
found to have a restricted movement in the parametric domain of the solution
provided the dark component of the DB vector soliton is a gray dark soliton.
However in the case of the DB soliton with fundamental dark component, this
singularity is fixed to a particular value. In addition, two different physically
interesting cases namely DB soliton with self-focusing nonlinearity and
self-defocusing nonlinearity arise under two different parametric conditions.
Finally, its collision dynamics is also investigated by constructing a more
general DB multisoliton solution.

PACS numbers: 42.65.Tg, 42.81.Dp

The study of coupled nonlinear Schrödinger (CNLS) equations has received a great deal
of attention in recent years due to their appearance as modeling equations in diverse areas
including nonlinear optics [1–9]. The incoherently CNLS equations used to describe the
(1+1)-dimensional propagation of high-intensity pico-second light of arbitrary polarization in
the isotropic Kerr media [10] reduce to the well-known integrable vector soliton system [11]
(namely Manakov model)

i
∂um

∂z
+

∂2um

∂x2
− 2µ(|um|2 + |u3−m|2)um = 0, m = 1, 2, (1)

if the ratio between nonlinearity due to self-phase modulation (SPM) (the coefficient of |um|2)
and cross-phase modulation (CPM) (the coefficient of |u3−m|2) is unity. In real materials the
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SPM/CPM ratio can take on a wide range of values. The case SPM/CPM =1 is a special
one possessing integrability property. Therefore, considerable attention was initially paid to
derive its different kinds of exact vector soliton (shape-preserving coupled soliton) solutions
of (1) mathematically [11–14]. Later on in a few physical situations, like photorefractive
crystals [2] and AlGaAs crystal at frequencies near half the band gap [1], the spatial vector
solitons of (1) have been experimentally observed. Here, u1 and u2 are the two components of
vector soliton; z and x are the longitudinal and transverse coordinates; the nonlinear coefficient
µ < 0 [12] (or µ > 0 [13]) if the Manakov model (1) governs the spatial vector solitons in
the self-focusing (SF) (or self-defocusing (SDF)) Kerr media. Without loss of generality, one
can remove µ from (1) by properly scaling the components u1 and u2. However, we retain µ

here to conveniently define the existing regions of the reported vector soliton solution.
The exact vector soliton solutions of (1) with enough degrees of freedom have richer

propagation dynamics than their scalar NLS equations (one-component counterparts) because
of their multicomponent nature. For example, the bright–bright (BB) vector soliton solution
of (1) [11] (which is valid only when µ < 0), differs from its scalar counterparts by exhibiting
the energy exchange collision in the SF Kerr media [12]. This cascaded collision dynamics
of BB spatial vector soliton lays experimental foundation for optical computation [7] and
information transfer [8]. Moreover, it was investigated in diverse areas [3–6, 9] including
Bose–Einstein condensates [5]. In addition to this BB vector soliton in the SF Kerr media
(µ < 0), the bright guided dark (BGD) (i.e., bright component does not exist without a
dark component’s support) [13] and the eight-parameter dark–dark (DD) [15] vector soliton
solutions in the SDF Kerr media (µ > 0) were also realized by solving (1) with µ > 0.
However to the best of our knowledge so far a more general spatial vector optical soliton
solution in the SDF Kerr media with the energy exchange collision property and the dark–
bright (DB) vector optical soliton with enough degrees of freedom were not realized by solving
the integrable CNLS family of equations. Can one possibly find such solutions by using (1)?
In order to answer this question, we have performed the following investigations.

In this paper, we are able to realize a new class of two-component vector optical soliton
solution in the Manakov model (1) through the Hirota method. It has nontrivial coupling
between dark and bright components (i.e., between the dark and the bright soliton solutions
of the scalar NLS equations, respectively, with the SDF nonlinearity and the SF nonlinearity)
having same envelope width, envelope speed and envelope trough location. Further, unlike the
BGD vector soliton solution of (1) [13], each of its component exists in the absence of other,
but with different nonlinear effects. As the solution couples two such component solitons with
SF and SDF nonlinearities, it has a singularity in between two parametric domains with µ > 0
and µ < 0. These two parametric domains actually correspond to two different special cases
of the solution (namely seven-parameter DB vector soliton with the SDF nonlinearity and
the SF nonlinearity) realized under two different parametric conditions. One can satisfy the
parametric condition by the suitable choice of seven free parameters of the DB vector soliton
solution. In addition, we have classified our solution into DB soliton with fundamental dark
pulse and gray dark pulse based on its minimum intensity value (i.e., minimum intensity of
fundamental dark soliton is zero while it is nonzero minimum in the gray dark soliton case).
While in the former case the singularity is fixed to a particular value, it can be moved towards
the SDF domain by tuning the free parameters in the later. Finally, by constructing a more
general DB vector multisoliton solution of (1) we have noted both the beating and breathing
effects as in the BGD case [13]. However, in our case, one can eliminate such effects without
disturbing the envelope width and speed of each colliding DB vector 1-soliton, which was not
possible in the BGD case. Further the present work enables us to realize the energy exchange
collision not only in the SF media but also in the SDF media by using the many component
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vector soliton system obtained by generalizing (1). However, it is beyond the scope of this
paper to report this, due to the complicated mathematics involved with many components.
Here, we have focused our attention in introducing a new class of two-component DB vector
soliton solution with the above interesting properties by solving (1). Here, Hirota’s technique
as shown below is used for this purpose.

By using the Hirota bilinear transformations [14],

u1 = g

f
and u2 = h

f
, (2)

the Manakov equation (1) can be decoupled as the following set of bilinear equations:(
iDz + D2

x − λ
)
g · f = 0,

(
iDz + D2

x − λ
)
h · f = 0 and(

D2
x − λ

)
f · f = −2µ(gg∗ + hh∗),

(3)

where ∗ denotes the complex conjugate, λ is an unknown decoupling constant, g(z, x) and
h(z, x) are complex functions while f (z, x) is a real function and the Hirota bilinear operators
Dz and Dx are defined by Dm

z Dn
x (g · f ) = (∂z − ∂z′)m(∂x − ∂x ′)n[g(z, x) · f (z′, x ′)]|z=z′,x=x ′ .

The above set of equations can be solved by introducing the following power series
expansions for g, h and f :

g = g0(1 + χ2g2), h = χh1 and f = 1 + χ2f2, (4)

where χ is the formal expansion parameter. The resulting set of equations, after collecting the
terms with the same power in χ , can be solved recursively to obtain g0, g2, h1 and f2. There
are many ways to define g0, g2, h1 and f2. But the Hirota method needs judicious ansatz for
input functions g0 and h1 to provide practically interesting nontrivial coupled solution [13, 14]
or solution with more number of arbitrary parameters [12, 15]. In this paper, we are able to
realize a new class of coupled DB vector optical soliton by following the Hirota method [14]
with g0 = τ(R)−1/2 exp(iψ) and h1 = α1 exp(η1), where τ = τR + iτI and α1 = α1R + iα1I are
complex parameters, ψ = lx − (l2 + λ)z + ψ(0) and η1 = k1x + i

(
k2

1 −λ
)
z + η

(0)
1 in which l and

ψ(0) are real parameters, k1 = k1R + ik1I and η
(0)
1 = η

(0)
1R + iη(0)

1I are complex parameters and
R and λ are the parameters to be determined. The resultant solution has nontrivial coupling
between the dark and bright components having the same envelope width (k1R), the envelope
speed (k1I ) and the envelope trough location (η1R + �/2 = 0) with seven free parameters as

u1 = cos θ e−iδz e2iA2zA[i sin β + cos β tanh(η1R + �/2)] ei(ψ ′+β+φ1),

u2 = sin θ e−iδz e2iA2zA sec h(η1R + �/2) ei(η′1I +φ2),
(5)

where θ = arctan(|α1|/2|τ |), φ1 = arctan(τI /τR), φ2 = arctan(α1I /α1R), ψ ′ = lx − l2z +
ψ(0), β = arctan[(k1I − l)/k1R], η′

1I = k1I x +
(
k2

1R − k2
1I

)
z + η

(0)
1I , η1R = k1R(x − 2k1I )z +

η
(0)
1R, � = ln(R), δ = {(

2|α1|2k2
1R

)/
[(4|τ |2 + |α1|2)′]

}
and A = [k1R(µ′)−1/2]. Here

R = {
[µ′(4|τ |2 + |α1|2)]

/
4k2

1R

}
,′ = (cos2 θ cos2 β − sin2 θ) and λ = 2A2 − δ.

There are seven free real parameters namely k1R, k1I , l, τR, τI , α1R and α1I in the above
solution. It can be characterized as explained below. From the envelope phase (η1R + �/2)

of (5), one can easily recognize k1R and k1I as the two independent parameters for the
envelope width and envelope speed. Therefore, it is possible to change the envelope width
without affecting the envelope speed of (5) or vice versa. Next to understand the role of l, the
changes in u1 of (5) while β varies as a function of k1R, k1I and l should be examined. It is
interesting to note that with respect to the value of β the vector soliton (5) can be classified
into (i) DB vector soliton with fundamental dark component under the condition k1I = l (i.e.,
at β = 0), (ii) DB vector soliton with gray dark component under the condition k1I �= l

(i.e., β �= 0). That is, if β = 0, u1 component reduces its form without disturbing u2 as
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(a) (b) (c)

Figure 1. The peak power variation against θ in degree for l = 0.5, µ = 1.0, (a) k1R = 0.2 and
k1I = 1.2; (b) k1R = 0.5 and k1I = 1.2; (c) k1R = 1.0 and k1I = 0.8.

u1 = cos θ e−iδz e2iA2zA tanh(η1R + �/2)] ei(ψ ′+φ1) and which is called as the fundamental dark
soliton since its minimum intensity is zero at η1R + �/2 = 0. In the β �= 0 case, the minimum
intensity of the dark component of (5) is nonzero. However it can be varied by tuning β with
the help of k1R, k1I and l. If the value of β is changed by using the free parameter l, then the
minimum intensity of u1 component of (5) varies without affecting the envelope width and
the envelope speed. The remaining four free parameters are coupling parameters and which
can be characterized as explained below.

It is interesting to note from (5) that the DB vector soliton is valid with the above free
parameters if µ′ > 0 (i.e., signs of µ and ′ must be same). This condition is needed here
in order to satisfy � with positive real R. Consequently with respect to the value of ′, the
following cases can be realized from (5) as

• DB soliton with the SDF nonlinearity (µ > 0) under the condition ′ > 0 (i.e.,
cos2 θ cos2 β > sin2 θ ),

• DB soliton with the SF nonlinearity (µ < 0) if ′ < 0 (i.e., ′ is negative if
cos2 θ cos2 β < sin2 θ ),

• The singularity of DB soliton at cos2 θ cos2 β = sin2 θ .

The singularity of the solution can be written as

θ = θc = arctan

[
k2

1R

k2
1R + (k1I − l)2

]1/2

, (6)

where θc is a critical value of θ at which the DB soliton solution (5) becomes extinct. It is
obvious to note from (6) that in the case of DB soliton with fundamental dark soliton (i.e., at
k1I = l) the value of θc is fixed to a particular value 45◦. Otherwise (if k1I �= l) the value of θc

is decided by the choice of k1R, k1I and l. In the general solution (5) the value of θ is selected
by using α1 and τ . Hence, if we choose α1 and τ such that θ > θc or θ < θc then (5) occurs
with the SF nonlinearity (′ < 0) or with the SDF nonlinearity (′ > 0). This is shown in
figures 1(a)–(c) by plotting the peak power of DB soliton (i.e., the maximum value of total
intensity |u|2 = |u1|2 + |u2|2) and the value of 1/′ against θ . From these figures, we note that
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(a) (b)

Figure 2. The contour plot obtained by plotting (a) equation (6) and (b) ′ in (5). (Note that
′ > 0 represents SDF and ′ < 0 defines SF regions).

the singularity of (5) appears in between the existing regions of (5) and moves with respect
to the values of k1R, k1I and l as for as k1I �= l. However, such a movement occurs with in
the limit θ < θc < 45◦ due to the nature of (6). That is in (6) the term

[
k2

1R + (k1I − l)2
]−1/2

is greater than k1R as for as k1I �= l. Therefore, from (6) it is obvious that θc moves only
in between 0◦ and 45◦ with respect to the values of k1R, k1I and l as for as k1I �= l. Such
movement can be characterized by plotting (6) as shown in figure 2.

Figure 2(a) is a contour plot and has a hyperbola in its θc plane. It represents a trajectory
in between the existing regions of (5). By plotting ′ for any given θ (as shown in figure 2(b))
one can identify that the area within the width of hyperbola has ′ > 0 (SDF nonlinearity)
and the region in between the vertices of hyperbola has ′ < 0 (SF nonlinearity). From the
figure 2, one can also note that the distance between the vertices of the hyperbola decreases
as θc tends to zero. At θc = 0◦, the existing region appears only within the width of hyperbola
supporting the SDF nonlinearity. It confirms a fact that when θ = 0◦ the solution (5) decouples
and has only the scalar dark soliton in u1 with the SDF nonlinearity. Further, one can note
that when θ = 90◦, the solution (5) decouples and supports only bright scalar soliton in u2

with the SF nonlinearity. When these two scalar solitons with different Kerr nonlinearities
are coupled, then only the term δ starts to appear in the complex modulation in z. From the
expression for δ one can also note that the term δ has ′. Therefore, the complex modulation
in z varies with respect to the sign of µ. Moreover, the term A in the amplitude part of coupled
soliton (5) depends on the all free parameters and also has a singularity. Therefore, the total
peak power of (5) depends on the all seven free parameters.

The total intensity of DB soliton can be defined as |u|2 = |u1|2 + |u2|2 and by using (5)
the relation for |u|2 can be easily derived. We note that, such a relation depends on θ as much
as the dependence of A on θ . Therefore, the variation in the peak power or maximum value of
|u|2 against θ is unavoidable if A includes θ . Suppose we were to remove θ from A by using
a constraint µ′ = 1, then we can distribute the peak power

(
k2

1R = A2
)

of |u|2 between
the u1 and u2 components as k2

1R cos2 θ and k2
1R sin2 θ , respectively. This is possible as the

peak power of the DB soliton is conserved against θ under the restriction µ′ = 1. This is
numerically confirmed as shown in figure 3 by plotting the peak power of (5) against θ under
the constraint µ′ = 1.

The collisions between many DB 1-solitons can be analyzed by constructing a DB
multisoliton solution. For this purpose by following the systematic steps of Hirota method
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Figure 3. Note that the peak power which is conserved against θ under a constraint is distributed
among u1 and u2 by tuning θ . Here we take k1R = 1.0, k1I = −1.0 and µ = 1.0.

[14], we define the expression g, h and f (in u1 = g/f and u2 = h/f ) correspond to the
N-soliton solution as

g = τ√
R

eiψ
∑

M1(a) exp


 2N∑

j=1

aj (ηj + ζj ) +
2N∑

1�j<k

ajakAjk




h =
∑

M2(a) exp


 2N∑

j=1

aj (ηj + εj ) +
2N∑

1�j<k

ajakAjk




f =
∑

M1(a) exp


 2N∑

j=1

ajηj +
2N∑

1�j<k

ajakAjk


 .

(7)

Here, the first sum is over all possible permutations of the vector a = (a1, a2, . . . , a2N) in
which aj ’s can be either 0 or 1. Then

M1 =
{

1 if
∑N

j=1 aj = ∑2N
j=1+N aj ,

0 otherwise,

M2 =
{

1 if
∑N

j=1 aj = ∑2N
j=1+N aj + 1,

0 otherwise.

The other parameters are defined as ηj = ηj , ηj+N = η∗
j , eεj = αj , eεj+N = 1

α∗
j

, eζj =
cgj , eζj+N = − 1

cg∗
j

, eAjk = υjk, eAj+N,k+N = υ∗
jk, eAjk+N = Rjk and eAj+Nk = R∗

jk in which

ηj = kjx + i
(
k2
j − λ

)
z + η

(o)
j , ψ = lx − (l2 + λ)z + ψ(o), cgj = kjR + i(kjI − l), υjk =

−(kj −kk)
2

αj αk

[ |τ |2
cgj cg

∗
k R

+ 1
µ

]
, Rjk = [

µ|τ |2
cgj cg

∗
k R/Rjk

− µαj α
∗
k

(kj +k∗
k )2

]
and R = ∏N

j,k=1 Rjk . Here the suffixes
R and I represent the real and imaginary parts, respectively, and ∗ represents the complex
conjugation. The value of N defines the number of one solitons in the solution (7). It has free
parameters kj , αj , l and τ where j = 1, 2, . . . , N . Here l and τ are common for all colliding
solitons. Because, the Hirota method restricts us to define the same background field for the
dark components of all colliding DB 1-solitons. Therefore, each colliding soliton of (7) has a
form of (5) in which free parameters are kj , αj , τ and l, j = 1, 2, . . . , N . The above solution
exhibits both the beating and breathing effects as explained below.

We have noted that the beating effect appears only if the colliding solitons of equation (7)
move slowly with approximately equal pulse widths. But the breathing effect appears between
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(a)

(c) (d)

(b)

Figure 4. The collision dynamics of equation (7) with the beating and breathing effects.
(a) Beating effect when τ = 1.0, k1R = 0.9, k1I = 0.02, k2R = 0.7, k2I = −0.02, l = 0.2, α1 =
0.7 + 0.72i, α2 = 0.44 + 0.9i and N = 2. (b) Beating effect is eliminated by tuning α2 to the value
0.1 + 0.2i. (c) Breathing effect with τ = 1.0, k1R = 0.9, k2R = 0.8, k3R = 0.7, k1I = k2I =
k3I = 0.0, l = 0.2, α1 = 1.0, α2 = 1.0, α3 = 1.0 and N = 3. (b) Breathing effect is nullified by
defining α1 = 4.0 and α2 = 0.1.

stationary DB solitons (i.e., kjI = 0, j = 1, 2, . . . , N) or between the DB solitons moving
with equal speed (i.e., k1I = k2I = · · · = kNI ) provided they have small pulse width
difference. However such effects can be eliminated by tuning the coupling parameters αj and
τ . For instance, the beating and breathing effects and its eliminations are shown in figure 4
by plotting |u1|2 of equation (7).

In the conclusion, to the best of our knowledge an exact vector soliton whose regions
of existence depend on its initial parametric values is realized for the first time with seven
free parameters by solving equation (1). It differs from the other well-known vector solitons
of equation (1) by admitting a movable singular point in between the existing parametric
regions of equation (5) and may receive considerable attention in a variety of nonlinear Kerr
media [1–9], where u1 and u2 are incoherently coupled as shown by equation (1). It is to be
mentioned that we are able to realize the energy exchange collision by extending the present
work to the general N-component integrable case suitably. It may lay a strong mathematical
foundation in the development of the optical computation [7], matter-wave switching devices
with Bose–Einstein condensates [5], etc. The details of such study will be focused elsewhere.
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